首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8531篇
  免费   214篇
  国内免费   414篇
化学   1916篇
晶体学   127篇
力学   74篇
综合类   5篇
数学   83篇
物理学   6954篇
  2024年   7篇
  2023年   93篇
  2022年   82篇
  2021年   60篇
  2020年   103篇
  2019年   121篇
  2018年   137篇
  2017年   202篇
  2016年   278篇
  2015年   251篇
  2014年   693篇
  2013年   544篇
  2012年   384篇
  2011年   807篇
  2010年   545篇
  2009年   631篇
  2008年   589篇
  2007年   701篇
  2006年   483篇
  2005年   362篇
  2004年   293篇
  2003年   264篇
  2002年   258篇
  2001年   242篇
  2000年   161篇
  1999年   183篇
  1998年   168篇
  1997年   81篇
  1996年   85篇
  1995年   52篇
  1994年   39篇
  1993年   40篇
  1992年   24篇
  1991年   25篇
  1990年   36篇
  1989年   18篇
  1988年   19篇
  1987年   26篇
  1986年   8篇
  1985年   9篇
  1984年   13篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1975年   2篇
  1974年   3篇
  1973年   5篇
排序方式: 共有9159条查询结果,搜索用时 15 毫秒
51.
An optical biosensor for urea based on urease enzyme immobilised on functionalised calcium carbonate nanoparticles (CaCO3-NPs) was successfully developed in this study. CaCO3-NPs were synthesised from discarded cockle shells via a simple and eco-friendly approach, followed by surface functionalisation with succinimide ester groups. The fabricated biosensor is comprised of two layers. The first (bottom layer) contained functionalised NPs covalently immobilised to urease, and the second (uppermost layer) was alginate hydrogel physically immobilised to the pH indicator phenolphthalein. The biosensor provided a colorimetric indication of increasing urea concentrations by changing from colourless to pink. Quantitative urea analysis was performed by measuring the reflectance intensity of the colour change at a wavelength of 633.16 nm. The determination of urea concentration using this biosensor yielded a linear response range of 30–1000 mM (R2 = 0.9901) with a detection limit of 17.74 mM at pH 7.5. The relative standard deviation of reproducibility was 1.14%, with no signs of interference by major cations, such as K+, Na+, NH?+, and Mg2+. The fabricated biosensor showed no significant difference with the standard method for the determination of urea in urine samples.  相似文献   
52.
Environmental pollution and its drastic effects on human and animal health have urged governments to implement strict policies to minimize damage. The first step in applying such policies is to find reliable methods to detect pollution in various media, including water, food, soil, and air. In this regard, various approaches such as spectrophotometric, chromatographic, and electrochemical techniques have been proposed. To overcome the limitations associated with conventional analytical methods, microfluidic devices have emerged as sensitive technologies capable of generating high content information during the past few years. The passage of contaminant samples through the microfluidic channels provides essential details about the whole environment after detection by the detector. In the meantime, artificial intelligence is an ideal means to identify, classify, characterize, and even predict the data obtained from microfluidic systems. The development of microfluidic devices with integrated machine learning and artificial intelligence is promising for the development of next-generation monitoring systems. Combination of the two systems ensures time efficient setups with easy operation. This review article is dedicated to the recent developments in microfluidic chips coupled with artificial intelligence technology for the evolution of more convenient pollution monitoring systems.  相似文献   
53.
Currently, highly luminescent colloidal upconversion nanoparticles (UCNPs) have expanded an increasing interest of researchers because of their facilitating lability in the biomedical/clinical field. In this study, NaYF4:Yb,Er UCNPs are prepared by eco-friendly metal complexation-based thermal decomposition method at a lower temperature in aqueous media. The phase structure, crystallinity, phase purity, morphology, colloidal dispersibility, surface structure, surface charge, and optical and luminescent properties were evaluated carefully by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive x-ray analysis (EDX), Thermogravimetric analysis (TGA), zeta potential, Fourier transform infrared (FTIR), UV/visible and photoluminescent spectroscopic techniques. XRD pattern shows a pure single-phase cubic structure with an average grain size of 30–35 nm. TEM and SEM micrographs exhibited irregularly shaped spherical morphologies, porous surface structures highly aggregated UCNPs with the narrow-size distribution. Positive zeta potential has shown value signifying high absorption in the visible region which indicates particle's good colloidal stability in aqueous media. Under NIR-laser light excitation, the UCNPs emit strong UC emission transitions in the visible region. A broad infrared absorption peak of hydroxyl groups (–OH) in FTIR spectrum and mass loss at a lower temperature in TGA verified the surface functionality of UCNPs, with high colloidal stability, and excellent biocompatibility in aqueous media. In terms of their surface characteristics and high luminescent properties, the NaYF4:Yb,Er UCNPs could be interestingly applied in tagging of biomolecules, drug delivery, proteins labeling, and therapeutic and thermostats applications.  相似文献   
54.
Catalysts that catalyze the generation of products in the gas phase, especially those involved in the hydrogen evolution reaction (HER), hold great promise for ecofriendly and sustainable energy development. In general, gas chromatography is widely used to measure catalytic activity. Unfortunately, it gives an averaged output that washes out the heterogeneities among individuals. To assess the unique catalytic properties at the single nanoparticle level, various methods based on single particle catalysis have been proposed. Over the past fifteen years, tremendous breakthroughs have been achieved, which uncovered hidden spatial and temporal heterogeneities. Although powerful, effectively quantifying the activities of single HER nanocatalysts remains challenging because of the fast diffusion of hydrogen (H2). In 2017, a novel approach based on a nanobubble indicator was proposed to correlate the kinetics of gas bubble evolution with the catalytic activities of individual nanoentities during the HER process. Since then, a plethora of optical microscopy techniques have been utilized to monitor dynamically evolved nanobubbles and to measure the catalytic activities of single HER catalysts. In this minireview, we summarized state-of-the-art optical microscopy for in operando imaging of dynamic nanobubbles involved in gas-generating reactions while highlighting some important discoveries, including the blinking photocatalytic activity and heterogeneous distribution of active sites. Finally, challenges and future perspectives in this promising field were identified.  相似文献   
55.
Surface-enhanced Raman scattering(SERS) is a molecular specific spectroscopic technique that amplifies the Raman signal of absorbed molecules for up to 1010times. Over the past decades, SERS substrates experienced rapid growth, resulting in excellent development for SERS analysis. Because the surface plasmonic resonance coupling between individual materials can form a "hotspot" region to maximize the Raman signal, among many substrate construction strategies, self-assembly attracts more attention in constructing superstructures with strong, uniform and stable SERS activity. In addition, a number of plasmon-free nanomaterials with appropriate superstructures samely show enhanced SERS activity, which is primarily attributed to the formation of the optical resonator. This review aims to provide a scientific synopsis on the progress of self-assembled superstructures for SERS and ignite new dis˗ coveries in the SERS platform, as well as SERS applications in various fields.  相似文献   
56.
呋喃基聚酯是指以2,5-呋喃二甲酸(FDCA)为主要单体合成的生物基或部分生物基高分子,其主链含有刚性的呋喃环,因而在结构、性能上与大规模使用的传统石油基芳香族聚酯(如PET、PBT)相似,有望在瓶、片、薄膜、化纤等领域部分替代后者。本文综述了呋喃基聚酯的分子结构、聚集态结构以及力学、气体阻隔、降解等性能方面的最新研究进展,讨论了结构与性能之间的关系。重点关注呋喃基聚酯突出的阻隔性能及其对应的影响因素,主要从分子结构(呋喃环的非对称性和极性)和聚集态结构(结晶等)两方面加以阐明。简介了呋喃基聚酯的发展现状及其在包装、纺织等领域的潜在应用,并展望其主要研究趋势。  相似文献   
57.
以DNA杂交双链为联接, 构建纳米金颗粒Core-satellites结构并激发等离子体耦合增强效应,利用Hg2+可与DNA中胸腺嘧啶T形成T-Hg2+-T特异性结构,研制了用于检测水中Hg2+的局域等离子体共振(LSPR)光纤传感器.待测溶液中的Hg2+能够引起富含T的DNA单链折叠,抑制DNA杂交反应,降低等离子体耦合强度,改变LSPR谐振波长.通过检测谐振波长红移变化,实现对Hg2+浓度的定量检测.本方法检测Hg2+的线性范围为5~150 nmol/L, 检出限为3.4 nmol/L (3σ). Zn2+、Mg2+、Pb2+等重金属离子对Hg2+检测无明显干扰作用.实际水样中Hg2+加样回收率为94.2%~105.4%,相对标准偏差<4.8%.  相似文献   
58.
We demonstrate a thermo-optic switch based on photonic liquid crystal fibres (PLCFs) in which two lines of air hole are selective filled with liquid crystal (LC), with a high extinction ratio of more than 20 dB around 1310 nm and 1550 nm. Only in the range of 2.0°C it can perform a turn off and on operation of transmitted light in the second telecom band around 1550 nm while the first telecom bands around 1310 nm is still on. Due to the splitting of the bandgap, the switching function is achieved in this kind of PLCFs. Before the cleaning point (CP) of LC, a broad bandgap from about 1120 nm to 1320 nm splits into two ones, which are continuing inducing huge bandgap extension to shorter wavelength and longer wavelength after the CP of LC, respectively. Moreover, the temperature responses around the CP of LC is also investigated. Its sensitivity is about ?92.32 nm/°C around the CP of LC. Therefore, such kind of selective-filled PLCFs could find potential applications as thermo-optic switch and temperature sensor in the telecom band.  相似文献   
59.
The incorporation of europium-substituted polyoxometalate (PM) into chiral amphiphiles is attractive for the fabrication of multifunctional chiral luminescent liquid crystalline materials. Chiral amphiphiles acted as good promoters to trigger the achiral PM to show induced supramolecular chirality through electrostatic interactions, as illustrated by circular dichroism (CD) spectra. Differential scanning calorimetry (DSC), polarized optical microscopy (POM), and temperature-dependent X-ray diffraction (XRD) analysis confirmed that the organic/inorganic hybrid polyoxometalate complex exhibited thermotropic mesomorphic behaviors. In a cast film, the complex displayed intrinsic luminescence that could be adjusted by accurately controlling the temperature. The electrostatic encapsulation of PM with chiral mesomorphic promoters provides an effective method for constructing PM-based chiral luminescent liquid crystalline materials.  相似文献   
60.
Nonlinear optical crystals of fluosilicate Na2SiF6 are synthesized via hydrothermal method and its structure is determined by single‐crystal X‐ray diffraction (XRD). The space group of Na2SiF6 is P321 with cell parameters a = 8.8715(3) Å, c = 5.0484(5) Å, Z = 3, V = 344.09(4) Å3. The properties of the crystal are measured by powder XRD, infrared (IR) spectroscopy, ultraviolet/visible (UV/Vis) near‐infrared (NIR) diffuse reflectance spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC) analysis. The bandgap calculated using CASTEP is 7.41 eV, indicating that the cut‐off edge of the Na2SiF6 crystal can be down to deep‐UV energy region. The first‐principles studies were performed to elucidate the structure/property relationship of Na2SiF6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号